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ABSTRACT: L-DOPA is currently one of the best medications for
Parkinson’s disease. It was assumed for several years that its benefits and
side effects were related to the enhancement of dopamine release in the
dopamine-depleted striatum. The use of intracerebral microdialysis
combined with a pharmacological approach has led to the discovery that
serotonergic neurons are responsible for dopamine release induced by
L-DOPA. The subsequent use of multisite microdialysis has further
revealed that L-DOPA-stimulated dopamine release is widespread and
related to the serotonergic innervation. The present Review emphasizes
the functional impact of extrastriatal release of dopamine induced by L-
DOPA in both the therapeutic and side effects of L-DOPA.
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L-DOPA is the best medication for Parkinson’s disease. The
use of L-DOPA as a treatment for Parkinson’s disease began
soon after the discovery that the striatal tissue concentration of
dopamine (DA) was lower in Parkinsonian patients compared
to age-matched individuals.1 The efficacy of L-DOPA was
improved by combination with a peripheral inhibitor of L-
aromatic amino acid decarboxylase (AADC) to prevent the
conversion of L-DOPA into DA in the bloodstream, thus
enhancing the brain penetration of L-DOPA. Although L-
DOPA is highly effective in relieving motor symptoms,
numerous motor and nonmotor side-effects including L-
DOPA-induced dyskinesias and psychosis can gradually emerge
over time.2 The functional impact of L-DOPA in the
Parkinsonian brain may not be solely restricted to its ability
to restore “physiological levels” of DA in the striatum. Further
investigations of its mechanism of action are thoroughly needed
in order to address the motor and nonmotor side-effects of L-
DOPA.
Intracerebral microdialysis is a powerful sampling technique

used to monitor steady-state extracellular levels of neuro-
transmitters in vivo. This technique has helped to decipher the
mechanism of action of numerous drugs and medications with
respect to their action toward neurotransmitter systems.3

Furthermore, the development of simultaneous implantation
of multiple microdialysis probes in distinct brain regions
(referred to here as multisite microdialysis) has proven its
strength in revealing region-dependent dynamics of neuro-
transmitter release in response to pharmacological challenges
and the neurochemical interactions between brain regions.
Here, we summarize data showing the numerous advantages

of intracerebral microdialysis to decipher the diverse features of

the mechanism of action of L-DOPA in the Parkinsonian brain
by using both a classical neuropharmacological approach and a
multisite microdialysis approach. The present Review empha-
sizes the effect of L-DOPA in extrastriatal brain regions and
how the region-dependent pattern of DA release induced by L-
DOPA through serotonergic (5-HT) neurons may be relevant
to its therapeutic and/or side-effects.

I. THE USE OF MICRODIALYSIS TO STUDY THE
MECHANISM OF ACTION OF L-DOPA ON DA
RELEASE IN THE RAT HEMIPARKINSONIAN BRAIN

In an attempt to understand the efficacy of L-DOPA in
restoring DA transmission in the Parkinsonian brain, initial
studies measured DA levels in post-mortem brain tissue.
However, these data led to numerous misunderstandings since
tissue concentration of DA induced by L-DOPA does not
reflect extracellular concentrations of DA. Moreover, these
results were further confounded by the fact that high doses of
L-DOPA were used that did not translate to the clinical
situation. The more recent use of microdialysis to directly
monitor extracellular levels of DA induced by L-DOPA has
provided clear neurochemical data about its mechanism of
action.4

A. Tissue Measurement of DA Gave Conflicting
Results Regarding the Mechanism of Action of L-
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DOPA. The first evaluations of the mechanism of action of L-
DOPA were performed using post-mortem tissue measurement
of DA in the rodent brain (Figure 1A). The destruction of
nigrostriatal DA neurons using the neurotoxin 6-hydroxydop-
amine (6-OHDA) has provided the opportunity to study in
rodents (mainly rats) the biochemical and behavioral impact of

L-DOPA in a model that recapitulates the main features of
Parkinson’s disease.5 The use of L-DOPA in this model raised a
major contradiction because L-DOPA, like agonists, and in
contrast to amphetamine, induced contralateral rotations in
unilaterally lesioned rats despite the loss of 90% or more DA
neurons. Thus, how could L-DOPA be so efficient at restoring

Figure 1. Contribution of intracerebral microdialysis to the mechanism of action of L-DOPA toward dopamine responses. (A) Tissue measurement
in response to L-DOPA administration in rodents was originally used. Immediately after the animal was sacrificed, the brain region of interest (here
the striatum) was removed, placed in an acid medium, sonicated, and centrifuged. Monoamine tissue concentrations from the supernatant were
quantified by high pressure liquid chromatography coupled to electrochemical detection (HPLC-ED). (B) Extracellular monitoring using
intracerebral microdialysis is performed using microdialysis probes inserted in the brain region of interest (here the striatum of a living animal). The
continuous flow rate of the artificial cerebrospinal fluid (aCSF) permits to collect samples at regular intervals. The dialysates are often analyzed with
HPLC-ED due to the high sensitivity of this approach toward monoamines. (C) The panel illustrates the different origin of the DA signals analyzed
with tissue measurement and intracerebral microdialysis after L-DOPA. L-DOPA will virtually enter all cells and/or terminals and, depending on the
presence of L-DOPA decarboxylase, will be converted in DA in several loci. The magnitude of the DA signal is often large (picomoles) due to the
contribution of multiple cellular systems. Using microdialysis probes, only DA reaching the extracellular space can be taken up by the probe. The
contribution of cells to the DA signals, often low in magnitude (some femtomoles), is restricted to cells capable of releasing DA, e.g., the 5-HT
neurons in DA-denervated rats.
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motor function through DA neurons when those neurons are
lost?

The decarboxylation of L-DOPA into DA occurs in virtually
all brain regions, but preferentially in the striatum.6 AADC is a

Figure 2. Summary of the pioneering data establishing the main role of 5-HT neurons in L-DOPA-stimulated striatal DA release. All the panels
report the results of different studies and the results correspond to the mean ± SEM of raw data (DA, quantity in picogram or femtomole per
volume unit). In all cases, the injection of L-DOPA is preceded by the peripheral injection of the L-DOPA decarboxylase inhibitor benserazide
(evidenced in panel A and B only). (A) The data of Miller and Abercrombie23 show that the effect of 50 mg/kg L-DOPA is minimal in intact rats
and extremely high in 6-OHDA rats. (B) In the same study, they showed that the infusion of the fast sodium voltage-dependent channel blocker
tetrodotoxin (TTX) dramatically reduced the effect of L-DOPA in 6-OHDA rats. The origin of DA released by L-DOPA is neuronal. (C) Using
reserpine, a blocker of the monoamine vesicular transporter, administered 2 h before L-DOPA, Kannari et al.24 showed that the effect of L-DOPA
required monoamine vesicles for exocytosis. (D) Tanaka et al.25 reported that the effect of 50 mg/kg L-DOPA was dramatically reduced in rats
bearing a lesion of 5-HT neurons. (E) The release of DA induced by L-DOPA (30 mg/kg) is no longer sensitive (same magnitude of effect without
quinpirole, not shown here) to the previous injection of the DA agonist quinpirole (1 mg/kg) in 6-OHDA rats.22 In intact rats, quinpirole limits the
effect of L-DOPA on DA release. Figures have been taken and adapted from refs 23−25 with permission from Editors Wiley and Elsevier.
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ubiquitous enzyme expressed by many cellular subtypes
including neurons, glial or endothelial cells in the brain where
L-DOPA is converted to DA.7−9 The fact that newly
synthesized DA is accumulating in a cell expressing AADC
does not predict the ability of the cell to release DA.10 Indirect
data suggested that 5-HT neurons may participate in the effects
of L-DOPA,11 and supporting clinical data indicated that the
efficacy of L-DOPA correlated with a decrease in tissue
concentration of the main metabolite of 5-HT, 5-hydroxyindol-
acetic acid (5-HIAA).12,13 Nevertheless, the role of 5-HT
neurons has been controversial with respect to the dose of L-
DOPA used. In 6-OHDA rats, the selective destruction of 5-
HT neurons reduced the ability of 30 mg/kg, but not 100 mg/
kg L-DOPA to increase striatal DA tissue concentration and to
induce contralateral rotations.8,14−16 These data indicate that
cellular systems other than 5-HT terminals (Figure 1C)
substantially contribute to the total amount of newly
synthesized DA that accumulates in the tissue at high doses
of L-DOPA, and this may impact upon motor output through
an unidentified mechanism. Some studies have shown that L-
DOPA contributes to the recovery of sensorimotor function17

and procedural motor learning in patients with stroke.18 Such
recovery may involve DA receptors expressed by glial cells.19

Although these data suggest a role for glia in modulating L-
DOPA-induced DA transmission, its functional contribution
may occur at doses of L-DOPA far beyond the therapeutic
range used in clinical settings, that is, 1−6 mg/kg.4

B. Contribution of Intracerebral Microdialysis to
Understanding the Function of Neurotransmitter Sys-
tems. The use of intracerebral microdialysis coupled with a
classical pharmacological approach has been unequivocal in
determining the origin of DA release induced by L-DOPA.
Figure 1B shows the implantation of a microdialysis probe into
the striatum and Figure 1C illustrates that, among the many
systems able to produce DA from exogenous L-DOPA, few
have the cellular machinery to release DA into the extracellular
space. Figure 2 displays a logical construction of the
pharmacological evidence showing that the main cellular
system responsible for the release of DA induced by L-
DOPA in 6-OHDA rats is 5-HT neurons. First, the magnitude
of the increase in L-DOPA-induced DA release is low in
nonlesioned rats and comparatively large in DA neuron-
lesioned rats (Figure 2A).20−23 Second, the increase in DA
release induced by L-DOPA (50 mg/kg) in 6-OHDA rats is
sensitive to tetrodotoxin (TTX), a blocker of fast voltage-
dependent sodium channels (Figure 2B),21,23 to the vesicular
monoaminergic transporter type 2 (VMAT2) blocker reserpine
(Figure 2C),24 and to an almost complete lesion (95−98%) of
5-HT neurons (Figure 2D).16,25 The role of 5-HT neurons is
further supported by numerous data showing that 5-HT1A
agonists, selective serotonin reuptake inhibitors (SSRI), or
deep brain stimulation of the subthalamic nucleus, which
directly or indirectly reduce the firing rate of 5-HT
neurons,26−28 inhibit L-DOPA-induced DA release.21,29−32

These data strongly suggest that DA terminals that remain
after a drastic 6-OHDA lesion are not involved in the release of
DA induced by L-DOPA.20 Indeed, L-DOPA-stimulated DA
release in DA-depleted rats is no longer altered by the D2
agonist quinpirole (Figure 2E), the nonselective D2 antagonist
haloperidol,22 an inhibitor of the DA transporter (DAT),23 or
an inhibitor of monoamine oxidase A (MAOA).33 These data
indicate that the impulse-dependent or -independent increase
in DA release induced by L-DOPA is not sensitive to DA-

dependent feedback mechanisms. Moreover, L-DOPA inhibits
DA neuron firing rates in intact34,35 and partially DA-depleted
rats,36 which would effectively counteract any impulse-depend-
ent release from DA neurons.
Therefore, what could be the contribution of DA neurons to

the increase in DA induced by L-DOPA in normal or partially
DA-depleted rats? Interestingly, blockade of monoamine
oxidase B (MAOB), an enzyme mainly present in 5-HT
neurons which is involved in the metabolic degradation of DA,
similarly enhances L-DOPA-induced DA release in intact and
6-OHDA rats. This suggests that 5-HT neurons also contribute
to release DA from exogenous L-DOPA in intact rats. Finally,
the main role of DA neurons in regulating DA extracellular
levels that are raised by another system may rely on the
presence of DAT.37 Indeed, blockade of DAT in intact animals
has been shown to potentiate the increase in striatal DA
extracellular levels induced by L-DOPA to a similar extent to
that induced in DA-depleted rats. The authors suggested that
DAT on spared DA terminals would maintain pseudophysio-
logical DA tone by clearing excess extracellular levels of DA.20

Therefore, DA clearance by DAT may dampen the impact of L-
DOPA-induced DA release from 5-HT neurons in the striatum
as long as DA terminals are spared. However, this raises the
question as to whether similar mechanisms are involved in
extrastriatal regions that receive poor DA innervation and dense
5-HT innervation.

II. MULTISITE IMPLANTATION OF DIALYSIS PROBES
TO STUDY THE REGION-DEPENDENT
NEUROCHEMICAL PATTERN INDUCED BY L-DOPA
IN THE RAT HEMIPARKINSONIAN BRAIN

Most microdialysis studies have focused on the striatum to
assess the effect of L-DOPA on DA release. However, in light of
the evidence that 5-HT neurons are responsible for the release
of DA induced by L-DOPA, this brain region is probably not
the unique target of L-DOPA’s effects. Indeed, 5-HT neurons
originating from the dorsal (DR) and median (MR) raphe
nuclei send widespread innervation throughout the entire
brain.38,39 Moreover, increases in DA release induced by
systemic or focal application of L-DOPA have also been
observed in various brain regions using single microdialysis
probe implantation including the hippocampus,40 the en-
topeduncular nucleus,41 the substantia nigra,42 and the
hypothalamus.43,44 The implantation of several dialysis probes
is interesting to simultaneously monitor DA extracellular levels
induced by L-DOPA within multiple brain regions and to study
the regional sensitivity to L-DOPA upon several neuro-
transmitter systems. In the next section, we review data
showing how the use of a multisite microdialysis approach has
shed light on the importance of extrastriatal DA release induced
by L-DOPA.

A. L-DOPA Induces a Region-Dependent Neuro-
chemical Pattern. 1. DA Release. Using four microdialysis
probes implanted ipsilaterally to the 6-OHDA-lesioned side
(Figure 3), we showed that L-DOPA induced an ectopic release
of DA in a pattern that follows the widespread innervation of 5-
HT neurons. The increase in DA extracellular levels was not
restricted to the striatum as it also occurred in the prefrontal
cortex (PFC), hippocampus (HIPP) and substantia nigra pars
reticulata (SNr).16,30,45 These brain regions receive various
density levels of 5-HT innervation and express DA receptors 46

upon which the newly synthesized DA from L-DOPA can
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promote DA transmission. The increase in DA release in all
brain regions is dependent upon the integrity of 5-HT neurons,
as partial and total 5,7-dihydroxytryptamine (5,7-DHT) lesions
respectively reduced and fully abolished the effect of L-
DOPA.16 Furthermore, the systemic administration of
citalopram, a blocker of 5-HT transporters (SERT), also
blocked the increase in DA release induced by L-DOPA in all
brain regions, confirming the role of 5-HT neurons in this
widespread effect of L-DOPA.16,21

The ectopic release of DA induced by L-DOPA via 5-HT
neurons creates an ‘inverted’ striatal-extrastriatal balance in DA
chemistry throughout the Parkinsonian brain. In physiological
conditions, basal DA concentrations are 30 times higher in the
striatum compared to other brain regions,47,48 in line with the
preferential innervation of mesencephalic DA neurons in
striatal territories. Using microdialysis techniques, monitored
DA extracellular levels are between 4.6 and 7.8 fmol/μL in the
striatum, while they are barely detectable in the PFC, SNr, and
HIPP (below 0.2 fmol/μL), depending on dialysis and
analytical conditions. In Parkinsonian conditions, the magni-
tude of the increase in extracellular DA concentrations induced
by therapeutic doses of L-DOPA (3−12 mg/kg) is far higher in

extrastriatal brain regions than in the striatum. At 3 mg/kg, L-
DOPA enhanced DA levels to similar amounts (0.7−1.3 fmol)
in the PFC, SNr, HIPP, and striatum. While the dose of 12 mg/
kg L-DOPA may “restore” physiological levels of DA
concentrations in the DA-denervated striatum, it induced a
“hyperdopaminergy” in other brain regions by increasing DA
concentrations to about 10−25 times higher than physiological
levels. Therefore, it appears that L-DOPA dramatically favors
extrastriatal DA transmission by releasing huge amounts of DA
beyond the striatum49 that may impact on DA receptors
throughout the Parkinsonian brain. Such an ‘inverted’ balance
in DA transmission between the striatum and other brain
regions may participate in the emergence of both short-term
benefits and long-term side effects of L-DOPA treatment (see
section III.B).

2. 5-HT Release. One of the advantages of the microdialysis
technique is the ability to quantify, with an appropriate coupled
analytical detection system, other neurotransmitters in the same
dialysates. With respect to the crucial involvement of 5-HT
neurons in the mechanism of action of L-DOPA, simultaneous
monitoring of 5-HT and DA extracellular levels has provided
important information about the region-dependent neuro-
chemical pattern of L-DOPA. We showed that systemic
administration of L-DOPA induced distinct effects on 5-HT
release depending on the dose and the brain region dialysated
(Figure 4). While an acute injection of 3 mg/kg L-DOPA
barely altered 5-HT release in all brain regions, the dose of 6
mg/kg decreased 5-HT levels in the SNr and HIPP only. L-
DOPA at 12 mg/kg decreased 5-HT extracellular levels in the
PFC and SNr and induced a biphasic effect in the HIPP, while
still not affecting 5-HT levels in the striatum.30,45 Different
mechanisms have been proposed to account for the dose- and
region-dependent effects of L-DOPA. The substitution of 5-HT
by L-DOPA-derived DA could result in both a decrease in 5-
HT exocytotic release and a nonexocytotic efflux of 5-HT from
SERT reversal.42,50−52 The relative contribution of both
mechanisms is currently unknown, but indirect evidence
suggests that they may depend upon the dose of L-DOPA
and the functional heterogeneity of 5-HT terminals in these
brain regions.53

3. Region-Dependent Mechanisms Revealed by Micro-
dialysis. Both impulse-dependent and -independent compo-
nents of DA release, and possibly of 5-HT, may participate in
the region-dependent neurochemical pattern of L-DOPA.45

The impulse-dependent component may be differentially
regulated in each brain region due to the distinct features of
5-HT innervation originating from the DR or MR nuclei.38,54

Indeed, the electrical activity of 5-HT neurons and the release
of 5-HT from 5-HT neurons of the DR and MR are
differentially controlled by 5-HT1A/1B autoreceptors.55−57 DR
neurons display a greater sensitivity to 5-HT1A activa-
tion55,58−61 and preferentially innervate the striatum, PFC,
and SNr.62 MR neurons may be under the control of another,
as yet unidentified mechanism63 and mainly innervate the HIPP
and PFC.64 Another mechanism that may impact upon the
exocytotic component of DA and 5-HT release in a region-
dependent manner is the expression of the vesicular glutamate
transporter VGLUT3 in a subset of 5-HT terminals.65 The
presence of VGLUT3 has been shown, at least in the raphe,
PFC, lateral septum, and HIPP, to promote 5-HT transmission
by increasing vesicular-filling synergy. Interestingly, VGLUT3
expression is up-regulated in the SNr but not in the striatum of
6-OHDA rats.66 This higher VGLUT3 expression may

Figure 3. Multisite intracerebral microdialysis. Schematic representa-
tion of the simultaneous implantation of four dialysis probes in the
prefrontal cortex (PFC), striatum (STR), substantia nigra pars
reticulata (SNr), and hippocampus (HIPP) on the ipsilateral DA-
depleted side. Dialysis probes were implanted in isoflurane-
anesthetized rats 3 weeks after the injection of 6-hydroxydopamine
(6-OHDA) in the right medial forebrain bundle (MFB). One
stereotaxic arm holds two dialysis probes for the STR and HIPP (4
mm long) and another holds two dialysis probes for the PFC (4 mm
long) and SNr (2 mm long). The stereotaxic coordinates (in mm)
were as follows: PFC, anteroposteriority from bregma (AP) = 3.00,
laterality (L) = 0.4, ventrality (V) = 4; STR, AP = 1.20, L = 3, V = 2.4;
SNr, AP = −5.30, L = 2.2, V = 1.2; HIPP, AP = −5.80, L = 5, V = 2.4.
AP coordinates from bregma are indicated in italics.
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potentiate the capacity of 5-HT terminals in the SN to release
DA from L-DOPA, and this may contribute to the region-
dependent efficacy of L-DOPA to increase DA and/or 5-HT
release, although this remains to be confirmed.
The impulse-independent release of DA induced by L-DOPA

could occur via the reversal of the SERT at the level of 5-HT
terminals. The relative contribution of such a mechanism may
depend upon SERT density among different brain regions. A
nonexocytotic (TTX-independent) efflux of DA has been
observed at a moderate dose (6 mg/kg) of L-DOPA within the
striatum and SN.21 This nonexocytotic component is 2-fold
higher in the SNr compared with the striatum, in line with the
higher density of 5-HT terminals and SERT in the SNr.
Furthermore, a high dose of L-DOPA (100 mg/kg) has been
shown to induce a nonexocytotic (TTX-independent) efflux of
DA in the HIPP of naiv̈e rats,40 a region particularly enriched
with SERT.67 However, the blockade of SERT by citalopram
fully blocked DA release induced by L-DOPA at 3 mg/kg and
partially reduced that induced by L-DOPA at 100 mg/kg in the
striatum, PFC, SNr, and HIPP, irrespective of the relative
SERT density in these brain regions.16 Citalopram could affect
both the impulse-dependent and -independent components of
DA release by activating 5-HT negative feedback through the
increase in 5-HT extracellular levels (decrease in exocytotic DA
release) and by blocking SERT (decrease in nonexocytotic DA
release by SERT reversal) respectively.

B. Involvement of Distinct Clearance Mechanisms in
the Region-Dependent Neurochemical Pattern of L-
DOPA. Distinct clearance mechanisms of L-DOPA-derived DA
may contribute to the region-dependent neurochemical pattern
of L-DOPA. As previously discussed (see section I.B), the
contribution of DAT from spared DA neurons in the clearance
of newly synthesized DA may operate mainly within the
striatum at early stages of the disease. In extrastriatal brain
regions like the PFC and HIPP, the impact of DA release from
5-HT neurons should be enhanced, in line with the lower
expression of DAT in these regions.68 Due to the progressive
loss of DA neurons throughout the course of the disease, the
contribution of DAT in DA clearance mechanisms may in fact
be minimal.69

The absolute levels of extracellular DA induced by L-DOPA
are greater in the striatum than in other areas for doses higher
than 3 mg/kg of L-DOPA. In addition to the DAT, numerous
data have shown that the SERT and the noradrenaline
transporter (NET) are capable of robust DA reuptake70−72

with moderate to high affinity respectively (Km = 78 μM for
SERT and 0.67 μM for NET compared to 2.54 μM for DAT).
It has been proposed that SERT may contribute to the
clearance of striatal DA release enhanced by L-DOPA.73

However, the fact that citalopram, a blocker of SERT,
suppresses L-DOPA-induced DA release 16 supports a role
for SERT in the release (see section II.A.3) rather than the
clearance of extracellular DA. In contrast, NET may

Figure 4. Time course of the region- and dose-dependent effect of L-DOPA on extracellular levels of 5-HT in hemiparkinsonian rats. Three to four
weeks after the unilateral injection of 6-hydroxydopamine into the medial forebrain bundle, rats were anesthetized with isoflurane and placed in a
stereotaxic frame for the simultaneous and ipsilateral implantation on the lesioned side of four microdialysis probes in the striatum (STR), substantia
nigra pars reticulata (SNr), hippocampus (HIPP) and prefrontal cortex (PFC) (see Figure 3). L-DOPA or its vehicle (veh) was administered
intraperitoneally (i.p.) at 3, 6, and 12 mg/kg 20 min after the i.p. administration of benserazide (15 mg/kg), an inhibitor of peripheral decarboxylase.
Data represent the mean ± SEM percentages of baseline in each sample (n = 4−5 rats/group) along the time course of the study. Statistical
comparisons are shown for the overall effect over 3 h of monitoring, *p < 0.05, **p < 0.01 versus veh group (Fisher’s PLSD test).
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substantially participate in the clearance of DA within
extrastriatal brain regions that have lower absolute levels of
extracellular DA compared to the striatum. Indeed, NET is
known to play a major role in the reuptake of extracellular DA
in brain regions poorly innervated by DA fibers.74 NA fibers
and NET are poorly represented in the striatum compared to
other brain regions.75 Accordingly, we have found that
administration of the NET blockers desipramine (Figure 5,
unpublished observations) and reboxetine (data not shown,
unpublished observations) enhanced L-DOPA-induced DA
release in the SNr, PFC, and HIPP, but not in the striatum.
Therefore, in the presence of NET blockers, the magnitude of
the increase in DA release induced by L-DOPA becomes
similar across all brain regions. This suggests that the greater
effect of L-DOPA in the striatum is not only related to 5-HT
terminals but also to the limited clearance of extracellular DA
by NET in this brain region.
Other mechanisms may participate in this region-dependent

clearance of L-DOPA-derived DA, including degradation by
catechol-O-methyl transferase or MAOB enzymes33,76 or other
transporters showing affinity for monoamines such as the
carbocation transporter OCT-3.77 The relative contribution of
these processes within each brain region remains to be
elucidated.
C. Evolution of the Region-Dependent Neurochem-

ical Pattern after Chronic L-DOPA Treatment. We have
shown that the reactivity of 5-HT terminals to a subsequent
challenge of L-DOPA (3−12 mg/kg) is modified in a region-
dependent manner in L-DOPA-treated rats (12 mg/kg/day for

10 days).52 The inhibitory effect of acute L-DOPA at 3 and 12
mg/kg on 5-HT release was potentiated in the SNr and HIPP
but not in the PFC of L-DOPA-treated rats. In the striatum, 5-
HT release was unaltered by L-DOPA whatever the dose
administered. Importantly, the region-dependent reactivity of 5-
HT terminals has a direct impact on the ability of L-DOPA to
increase DA release after chronic treatment. Indeed, the lack of
sensitivity of striatal 5-HT terminals to L-DOPA on 5-HT
release is associated with a preserved increase in L-DOPA-
induced DA release. Conversely, nigral 5-HT terminals exhibit
the highest sensitivity to L-DOPA and the most profound loss
of efficacy of L-DOPA to increase DA release.52

Furthermore, chronic treatment with L-DOPA (12 mg/kg)
decreases both basal extracellular levels and tissue concen-
trations of 5-HT and 5-HIAA.45,78,79 These data suggest a
negative impact of L-DOPA on 5-HT neuron integrity.45,80 At
6 mg/kg, L-DOPA also decreased tissue concentrations of 5-
HT, but not 5-HIAA, in the striatum of L-DOPA-treated rats.21

It appears that, even at moderate doses, a detrimental impact of
chronic L-DOPA on 5-HT neuron integrity may participate in
the heterogeneous region-dependent loss of efficacy of L-
DOPA on DA release in the Parkinsonian brain. These data
suggest that chronic L-DOPA treatment leads to a new
disequilibrium of DA transmission between the striatum and
other brain regions compared to the DA imbalance observed
following acute treatment (see section II.A.1). As discussed
previously, different mechanisms may occur in the striatum
compared to other brain structures that might account for the
relative preservation of striatal DA effect of L-DOPA (i.e.,

Figure 5. Region-dependent influence of noradrenaline transporter blockade on DA release induced by L-DOPA in hemiparkinsonian rats. Three to
four weeks after the unilateral injection of 6-hydroxydopamine into the medial forebrain bundle, rats were anesthetized with isoflurane and placed in
a stereotaxic frame for the simultaneous and ipsilateral implantation on the lesioned side of four microdialysis probes in the striatum (STR),
substantia nigra pars reticulata (SNr), hippocampus (HIPP), and prefrontal cortex (PFC) (see Figure 3). Desipramine (DMI) or its vehicle (veh)
was administered intraperitoneally (i.p.) at 10 mg/kg 20 min before the i.p. administration of L-DOPA (12 mg/kg). Data represent the mean ± SEM
percentages of absolute extracellular levels of DA expressed in pg/10 μL of dialysate (n = 4−5 rats/group). **p < 0.01 for the overall effect of the
DMI + L-DOPA group versus the veh + L-DOPA group (Fisher’s PLSD test).
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absence of NET clearance; see section II.B) and the region-
dependent reactivity of 5-HT terminals to acute and chronic L-
DOPA treatments.45 Of note, chronic L-DOPA treatment by
itself has been shown to alter the morphology of 5-HT neurons
in the striatum as well as synaptic plasticity in various brain
regions.81−86 The sprouting of 5-HT fibers has been specifically
observed in the DA-lesioned striatum of dyskinetic animals53

and is positively correlated with the severity of L-DOPA-
induced dyskinesias.85 However, no correlation could be found
between this higher 5-HT nerve density and the magnitude of
KCl-evoked striatal DA release measured by in vivo
chronoamperometry after chronic L-DOPA treatment.87

D. Methodological Considerations. Other sampling
methods have been used to study the effects of L-DOPA on
DA release such as high speed in vivo chronoamperometry.87,88

In contrast to microdialysis, this technique allows for the
measurement of DA kinetics with better time resolution
(subseconds compared to minutes for microdialysis) of changes
in uptake rate and clearance time.89 However, this technique
requires the simultaneous implantation of a carbon fiber
electrode with one micropipet filled with KCl solution to evoke
DA release after conversion (decarboxylation) from L-DOPA,
which limits the possibility to assess DA kinetics simultaneously
in multiple brain regions. Chronoamperometry may be
preferred over microdialysis to avoid altered presynaptic
inhibition due to dialysis probe implantation.90 However, this
altered presynaptic inhibition results in underestimation of
extracellular DA concentrations in a somewhat proportional
manner for both reuptake and release processes.90−92 Lower
monoamine concentrations are detectable using microdialysis
compared to in vivo chronoamperometry as they do not require
KCl or electrical stimulation. Most importantly, the direct and
relative comparison of L-DOPA’s effects in several brain
regions indicates that this presynaptic inhibition may be of
minimal influence. Indeed, a distinct and specific pattern was
observed on DA versus 5-HT levels induced by L-DOPA after
various pharmacological challenges (chronic L-DOPA treat-
ment or acute NET blockade).
Although the data presented above have undoubtedly

revealed the powerful spatial resolution of multisite micro-
dialysis to study the biochemical action of L-DOPA in the
Parkinsonian brain, the functional impact of these diffuse effects
on motor and nonmotor symptoms still remains to be
elucidated. Indeed, the use of a multisite approach necessitates
the use of anesthesia for the implantation of multiple probes.
All anesthetics will alter the activity of diverse neuronal
populations and may affect the biochemistry of neuro-
transmitter systems. Yet, the magnitude of the effects elicited
by L-DOPA on striatal or nigral DA release in anesthetized
rats16 is similar to that induced in awake rats.21 Few studies
have used a dual-site microdialysis approach to directly
correlate the neurochemical (GABA and glutamate release)
and behavioral changes induced by L-DOPA in freely moving
6-OHDA-lesioned rats.93,94 These studies are remarkable and
not easy to implement routinely due the difficulty of collecting
dialysate samples in animals subjected to contraversive
rotations and/or dyskinesias induced by acute and chronic L-
DOPA treatment, respectively.

III. PROSPECTIVE OUTCOMES FROM MULTISITE
MICRODIALYSIS STUDIES TO CONTROL THE
REGION-DEPENDENT NEUROCHEMICAL PATTERN
OF L-DOPA

Many therapeutic strategies developed over the years have
focused on the use of additional treatments to enhance the
efficacy of L-DOPA to release DA in the striatum. However, the
use of multisite microdialysis techniques has brought new
biochemical evidence to reappraise the mechanism of action of
L-DOPA beyond the striatum. Both the involvement of 5-HT
neurons and the region-dependent neurochemical pattern of L-
DOPA have created new directions for therapeutic strategies
aimed at controlling the effects of L-DOPA throughout the
Parkinsonian brain.

A. Therapeutic Strategies to Control 5-HT Neuronal
Function. 1. Inhibitors of Monoamine Oxidase B. Given its
toxic properties,95−98 L-DOPA may be a factor contributing to
5-HT neuronal damage along with the progression of the
disease. Quinones formed from L-DOPA and newly synthe-
sized DA inactivate tryptophan hydroxylase (TPH),99 the initial
enzyme involved in the biosynthesis of 5-HT, by converting
TPH to a redox-cycling quinoprotein that may participate in 5-
HT neuronal toxicity.100−102 These mechanisms could be
involved in the overall decrease in 5-HT function observed in
Parkinsonian patients and DA-depleted rats receiving L-DOPA
treatment.45,53,78,100,103,104 Rasagiline, a nonselective MAOB
inhibitor, enhances the efficacy of L-DOPA.76 It acts to
maintain substantial concentrations of intracellular DA levels
inside 5-HT cells and prevents the potential destruction of 5-
HT neurons by enhancing oxidative metabolism.80 The
decrease in oxidative stress may participate in the ability of
rasagiline to prolong the efficacy of L-DOPA on striatal DA
release.105,106 Since 5-HT neurons represent the main site of
action of both L-DOPA and rasagiline, the prolonged efficacy
on L-DOPA-induced DA release may extend beyond the
striatum.

2. 5-HT1A/1B Agonists. One of the first therapeutic
approaches arising from evidence that newly synthesized DA
from L-DOPA is released by 5-HT neurons was to develop
strategies aimed at controlling the activity of 5-HT neurons. It
has been shown that the decrease in therapeutic efficacy of L-
DOPA treatment over time is associated with the development
of numerous side effects including L-DOPA-induced dyskine-
sias (LIDs). LIDs are thought to emerge as a consequence of
the dysregulated release of DA.21,78,107−111 The use of 5-HT
drugs to control 5-HT nerve activity and the output of DA
from 5-HT neurons appears promising and clinical trials are
currently underway to assess the ability of these drugs to
alleviate LIDs.
The stimulation of 5-HT1A/1B autoreceptors,21,29 the block-

ade of SERT by SSRIs112−114 and/or 5,7-DHT lesion16,25 are
known to inhibit L-DOPA-induced DA release, an effect
associated with a marked reduction in LIDs.21,78 However,
these mechanisms have been described mostly in the striatum
while other brain regions could be involved in the development
of LIDs.115−121 The limit of such an approach is that a general
decrease in DA release from 5-HT neurons, although
counteracting LIDs, may aggravate Parkinsonism and/or
exacerbate depressive and cognitive symptoms.100,122−127 In
light of the neurochemical brain pattern of L-DOPA, strategies
aimed at controlling the output of DA from 5-HT neurons in a
region-specific manner would be more appropriate.
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B. Functional Perspectives from a Tailored Strategy
Aimed at Controlling the Region-Dependent Effects of
L-DOPA. Data obtained from acute to chronic L-DOPA
treatment has shown that the region-dependent pattern of L-
DOPA evolves toward prominent striatal DA transmission.
Although the increase in striatal DA levels at early stages of the
disease has been associated with the efficacy of L-DOPA on
motor symptoms, the dysregulated DA release at later stages
has been directly implicated in LIDs.78,107 Given the diffuse
action of L-DOPA in the brain at early stages of the disease, it is
likely that the large increase in DA levels observed in
extrastriatal regions contributes to the efficacy of L-DOPA
(see section II.A.1). Consistent with this, the SN is known to
participate in the motor effects of L-DOPA in 6-OHDA-
lesioned rats.119,128 Moreover, enhanced DA transmission in
the PFC can counteract aberrant DA signaling in subcortical
areas.129 However, the loss of efficacy of L-DOPA in increasing
cortical and nigral DA levels after chronic treatment45 may
favor aberrant DA signaling in cortico-subcortical loops and
promote the occurrence of LIDs. It seems that we could gain
from a targeted strategy aimed at restoring the efficacy of L-
DOPA specifically in extrastriatal areas after chronic treatment.
To adopt a region-dependent strategy, one possibility could

be to further develop another advantage of using multisite
microdialysis, namely, the ability to examine the functional
interconnections between brain regions.130,131 A number of
studies have used a dual-probe microdialysis approach to
directly assess the relationship between two brain regions by
pharmacologically modulating one brain region while simulta-
neously examining the responses in efferent areas.93,94 These
studies have mainly focused on amino acid efflux in different
areas of the basal ganglia and their contribution to L-DOPA-
induced dyskinesias. Currently, it is unknown whether the local
rise in DA release induced by L-DOPA in the SN, PFC, or
HIPP does influence DA released by L-DOPA in distal sites
including the striatum. Similarly, it would be worth trying to
determine whether local application of 5-HT agents in one
brain region alters L-DOPA-induced DA release in efferent
projection areas. In physiological conditions, DA is known to
play a fundamental role in gating the functional interactions
between many brain regions.132−134 These relationships are
likely evolving in a pathophysiological condition such as
Parkinson’s disease where DA is released by 5-HT neurons in a
region-dependent manner.

■ CONCLUSION

Multisite microdialysis has proven to be a powerful method for
the in vivo simultaneous monitoring of DA and 5-HT
pharmacokinetics induced by L-DOPA in several brain regions
of the hemiparkinsonian rat. This method has revealed a
region-dependent pattern of DA release from exogenous L-
DOPA throughout 5-HT neurons. This significant discovery
has unravelled new insights into the mechanism of action of L-
DOPA and its diffuse action in the Parkinsonian brain.
Although the DA released in extrastriatal brain regions has
been neglected for several decades, the data presented above
supports the need to thoroughly consider this ectopic DA effect
of L-DOPA in the development of therapeutic strategies aimed
at controlling its motor and nonmotor complications.
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